ACAP Latest News

Read about recent developments and findings in procellariiform science and conservation relevant to the Agreement on the Conservation of Albatrosses and Petrels in ACAP Latest News.

Contact the ACAP Communications Advisor if you wish to have your news featured.

Results of the most recent albatross counts on Kure Atoll

The Kure Atoll Conservancy has reported on the completion of the most recent counts of breeding albatrosses on Kure Atoll, one of the USA’s North-Western Hawaiian Islands.

Whole-island counts of occupied nests have revealed totals of 38 307 Laysan Albatross Phoebastria immutabilis pairs, against 17 604 nests in the previous season.  The previous highest count was of 24 323 in 2012.

The Black-footed Albatross P. nigripes count was of 3671 occupied nests, 817 more than last year’s count and close to the 2011 record high of 3766.

A Black-footed and a Laysan Albatross on Kure Atoll

The Short-tailed Albatross P. albatrus female-female pair is once more present on the atoll; this couple have had a confirmed nest each year on Kure since 2010.  The Hawaiian Department Land and Natural Resources (DNLR) did not have a presence during winter months on Kure Atoll before 2010 so it is possible they had been present earlier but gone undocumented.

 

Short-tailed Albatross female-female pair on Kure Atoll

In other Kure news the body of a Black-footed Albatross that was banded on the atoll in June washed up on the Hawaiian island of Moloka'i in late December.  Black-footed Albatrosses are only occasionally seen on the main Hawaiian Islands.

 

Banded Black-footed Albatross corpse on Moloka'i

Information from the Kure Atoll Conservancy.

John Cooper, ACAP Information Officer, 09 January 2015

An incubating Laysan Albatross gets unhooked

A longline hook with attached line was successfully removed from an incubating Laysan Albatross Phoebastria immutabilis on Kure Atoll, one of the USA's North-Western Hawaiian Islands on 18 December by a field team from the Hawaiian Department of Land and Natural Resources (DNLR).

The bird was checked later when it was still sitting on its egg.  According to the Kure Atoll Conservancy’s Facebook Page the “hook is from the longline industry and it is likely that the bird was hooked as the line was being hauled in.  The line was probably cut when the bird was pulled on deck, leaving 12" [300 mm] of heavy line and the huge hook in the throat of the bird. “

 

Hooked albatross: before and after, photographs from the Kure Atoll Conservancy

With thanks to Lindsay Young, ACAP North Pacific News Correspondent and the Kure Atoll Conservancy for information and photographs.

John Cooper, ACAP Information Officer, 08 January 2015

A newly-developed underwater bait setter aims to stop albatrosses and petrels being killed by pelagic longline fisheries

Graham Robertson (Australian Antarctic Division, Kingston, Tasmania) and colleagues write open-access in the Open Journal of Marine Science on the development of an underwater bait setter to deliver pelagic longline hooks to depths out of the reach of albatrosses and petrels.

The paper’s abstract follows:

“Longline fisheries for tunas and tuna-like species present an existential threat to many populations of albatrosses and petrels worldwide.  To prevent this form of mortality we developed a new technology designed to deploy baited hooks underwater beyond the dive depths of seabirds (6 – 10 m for the species most commonly caught).  The underwater bait setter is a stern-mounted, hydraulically-operated and computer-controlled device that catapults baited hooks underwater in a steel capsule connected to hydraulic winches by Spectra® rope.  Baits are flushed from the capsule by water pressure through a spring-loaded bait release door.  The chief engineering challenges in the developmental stages were ensuring: 1) bait delivery to target depths with cycle times (time from release to recovery) that were practical for fishing operations; 2) bait retention in the capsule (no drop-outs) on the descent phase of the cycle; 3) baits, upon release at target depth, were not drawn up the water column on the capsule recovery phase (from possible hook-ups and/or suction); and 4) the retention of baits on hooks post-release from the capsule was not affected by the mechanical release underwater.  Operational trials with the final version of the capsule yielded satisfactory cycle times to depths of 6 - 10 m.  All baits were retained in the capsule on the descent and released as required at target depths (n = 606 deployments).  Bait retention on hooks post release from the capsule and retention on hooks hand-set at the surface (the conventional method) were statistically indistinguishable.  The underwater bait setter is modular in construction and can be fitted to all types of vessel sterns.”

The problem: a White-chinned Petrel caught on a longline hook

Photograph by Nicolas Gasco

With thanks to Barry Baker for information.

Reference:

Robertson, G., Ashworth, P., Ashworth, P., Carlyle, I. & Candy, S.G.  2015.  The development and operational testing of an underwater bait setting system to prevent the mortality of albatrosses and petrels in pelagic longline fisheries.  Open Journal of Marine Science 5: 1-12.

John Cooper, ACAP Information Officer, 07 January 2014

Scopoli’s Shearwaters, Northern Gannets and West African fisheries: need for improved marine conservation

David Gremillet (CEFE-CNRS, Montpellier, France) and colleagues have published in the journal Biological Conservation on movements of Scopoli’s Shearwaters Calonectris diomedea and Northern Gannets Morus bassanus off West Africa.

The paper’s abstract follows:

“Foreign fisheries massively harvest waters off West Africa, plundering local marine economies and threatening African food security.  Here we warn that these fisheries might affect both juvenile and adult European seabirds during their autumn migration and at their wintering grounds.  Using miniaturised GPS, satellite transmitters and geolocators, we tracked the migratory movements of 64 adult and juvenile Northern gannets (Morus bassanus) and Scopoli’s shearwaters (Calonectris diomedea) after their breeding season in the eastern Atlantic and the Mediterranean Sea, respectively.  It was the first time ever that the movements of gannet fledglings were tracked with GPS accuracy.  During winter (October to March) birds made extensive use of marine areas within the exclusive economic zones of Morocco, Western Sahara, Mauritania and Senegal.  These juvenile and adult European seabirds are therefore dependent upon African marine resources and at risk from competition with fisheries, as well as intentional and incidental mortality by fishing gear.  Those threats occur additionally to detrimental seabird–fishery interactions in Europe.  There is an urgent need for improved marine conservation off West Africa, and our data demonstrating connectivity between specific European breeding colonies and African wintering areas are a major step towards stakeholder involvement.”

 

Cory's Shearwater at sea, photograph by Jacob Gonzalez-Solis

Reference:

Gremillet, D., Peron, C., Provost, P. & Lescroel, A. 2015.  Adult and juvenile European seabirds at risk from marine plundering off West Africa.  Biological Conservation 182: 143-147.

John Cooper, ACAP Information Officer, 06 January 2015

Taxonomic status of Shy and White-capped Albatrosses

George Sangster (Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden) and colleagues write in the ornithological journal Ibis on the taxonomic status of the shy albatross complex.  They recognize three species, regarding the Shy Albatross Thalassarche cauta (endemic to Australia) and the White-capped Albatross T. steadi (endemic to New Zealand) as conspecific and separable at the subspecific level.

ACAP currently recognizes these two taxa as full species, as does BirdLife International/IUCN, with both being categorized as Near Threatened.

The 10th Report of the Taxonomic Sub-Committee of the BOU Records Committee writes of the shy albatross taxon as follows:

“A phylogeographical analysis based on mitochondrial DNA sequences indicates that Shy Albatross comprises three major groups: eremita, salvini and cauta/steadi (Abbott & Double 2003a).  Of these, eremita and salvini are sister taxa, and cauta/steadi their closest relatives (Nunn & Stanley 1998, Chambers et al. 2009).  These three groups differ in plumage and bare-parts coloration.  Adult eremita has dark grey plumage on the head and neck and a bright yellow bill, while salvini has noticeably lighter grey head and neck plumage and a grey bill with a contrasting pale yellow upper ridge, and adult cauta/steadi has white head, neck and upper mantle, and a pale grey bill with a pale yellow upper ridge (Marchant & Higgins 1990, Tickell 2000, Brooke 2004).

The taxa cauta and steadi show a single fixed nucleotide difference, minor plumage differences and mean differences in morphometrics but do not form reciprocally monophyletic groups (Abbott & Double 2003a,b, Double et al. 2003).  Current evidence provides insufficient support for recognizing cauta and steadi as full species.  Based on the combination of morphological and molecular data, recognition of three species is warranted:

Shy Albatross Thalassarche cauta (polytypic, with subspecies cauta, steadi)

Chatham Albatross Thalassarche eremita (monotypic)

Salvin's Albatross Thalassarche salvini (monotypic)

Shy Albatross is on the Western Palaearctic list based on a single record in Egypt and Israel (February–March 1981, Shirihai 1996, see also Cole 2000).”

A White-capped Albatross stands over its chick, photograph by David Thompson

Reference:

Sangster, G., Collinson, J.M., Crochet, P.-A., Kirwan, G.M., Knox, A.G., Parkin, D.T. & Votier, S.C. 2014.  Taxonomic recommendations for Western Palaearctic birds: 10th Report.  Ibis 157: 193-200.

John Cooper, ACAP Information Officer, 05 January 2015

The Agreement on the
Conservation of Albatrosses and Petrels

ACAP is a multilateral agreement which seeks to conserve listed albatrosses, petrels and shearwaters by coordinating international activity to mitigate known threats to their populations.

About ACAP

ACAP Secretariat

119 Macquarie St
Hobart TAS 7000
Australia

Email: secretariat@acap.aq
Tel: +61 3 6165 6674